

Roll No:

B.TECH (SEM I) THEORY EXAMINATION 2020-21 ENGINEERING MATHEMATICS-I

Time: 3 Hours

Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

$2 \ge 10 = 20$

Qno.	Question	Marks	CO
a.	Prove that the matrix $\frac{1}{\sqrt{1}} \frac{1}{1} \frac{1}{i} \frac{1}{i}$ is unitary.	2	1
b.	State Rank-Nullity Theorem.	2	1
c.	State Rolle's Theorem.	2	2
d.	Discuss all the symmetry of the curve $x y = x = a$	2	2
e.	If $u f y z, z x, x$ y , prove that $ 0$	2	3
f.	If x e sec u, y e tan u, then evaluate $-\frac{y}{y}$.	2	3
g.	Evaluate e dydx.	2	4
h.	Calculate the volume of the solid bounded by the surface $x = 0$, $y = 0$, $x+y+z=1$ and $z=0$.	2	4
i.	Show that the vector $V^{i} x 3y \hat{i} y 3z \hat{j} x 2z k$ is solenoidal.	2	5
j.	State Green's theorem.	2	5

2. Attempt any three of the following:

Qno.	Question	Marks	CO
a.		10	1
	Find the inverse of the matrix $A = 4 = 3 = 1$		
b.	If y e , prove that.	10	2
	$(1 + x^2)y_{n+2} + [(2n+2)x-1)y_{n+1} + n(n+1)y_n = 0.$		
c.	If $u v w x y z$,	10	3
	uv w x y z,		
	uvw xyz		
	,Show that:		
	$\partial u, v, w$ 1 $4xy xy$ $yz zx$ 1 $6xyz$		
	$\partial x, y, z$ 2 3 u v w 27 u v w		
d.	Evaluate by changing the variables $\iint x y dx dy$ where R is the	10	4
	region bounded by the parallelogram $x+y=0$, $x+y=2$, $3x-2y=0$ and $3x-2y$		
	= 3.		
e.	Use divergence theorem to evaluate the surface integral $\int x dy dz$	10	5
	ydzdx $zdxdy$ where S is the portion of the plane x+2v+3z=6 which		
	lies in the first octant.		

1 | Page

Download all NOTES and PAPERS at StudentSuvidha.com

PAPER ID-311288

Roll No:

3. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	Find non-singular matrices P and Q such that PAQ is normal form.	10	1
	1 1 2		
	1 2 3		
	$0 \ 1 \ 1$		
b.	Find the eigen values and the corresponding eigen vectors of the	10	1
	following matrix.		
	2 0 1		
	A 0 3 0.		
	1 0 2		

4. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Find the envelope of the family of lines 1, where a and b ar	e 10	2
	connected by the relation a b c		
b.	If $y = sin (m sin^{-1}x)$, find the value of y_n at $x = 0$.	10	2

5. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Divide 24 into three parts such that continued product of first, square of second and cube of third is a maximum.	10	3
b.	If $u \ sec$, prove that $x - y = 2 \cot u$. Also evaluate x 2 $\overline{x} \overline{y} \overline{y} \overline{y} \overline{y} \overline{y}$.	10	3

6. Attempt any *over* art of the following:

Qno.	Question	Marks	СО
a.	Evaluate the following integral by changing the order of integration	10	4
	-dydx.		
b.	A triangular thin plate with vertices (0,0),(2,0) and (2,4) has density ρ	10	4
	1 x y. Then find:		
	(i) The mass of the plate.		
	(ii) The position of its centre of gravity G.		

7. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	A fluid motion is given by \vec{v} ysin z sinx \hat{i} x sin z 2yz \hat{j}	10	5
	xycos z y k.Is the motion irrotational? If so, find the velocity potential.		
b.	Verify Stoke's theorem for the function $\vec{F} \cdot \vec{x} \hat{i} = xyj$ integrated round the square whose sides are x=0,y=0,x=a,y=a in the plane z=0.	10	5

2 | Page

Download all NOTES and PAPERS at StudentSuvidha.com