Roll No: \square

B.TECH

(SEM I) THEORY EXAMINATION 2020-21

ENGINEERING MATHEMATICS-I

Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

Qno.	Question	Marks	CO
a.	Prove that the matrix $-\frac{1}{\sqrt{*}} \quad 1 \quad{ }_{1}{ }^{i}$ is unitary.	2	1
b.	State Rank-Nullity Theorem.	2	1
c.	State Rolle's Theorem.	2	2
d.	Discuss all the symmetry of the curve $x y \quad x \quad a$	2	2
e.	If u f $y z, z x, x \quad y$, prove that $-\quad-\quad-0$	2	3
f.	If x e sec $u, y \quad e$ tan u, then evaluate -	2	3
g .	Evaluate e dydx.	2	4
h.	Calculate the volume of the solid bounded by the surface $x=0, y=0$, $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$ and $\mathrm{z}=0$.	2	4
i.	Show that the vector $W^{\vec{~}} x 3 y \hat{\imath} \quad y 3 z \hat{\jmath} \quad x 2 z k$ is solenoidal.	2	5
j.	State Green's theorem.	2	5

SECTION B

2. Attempt any three of folle following:

Qno.	Question	Marks	CO
a.	Find the invefoe of the matrix $A \begin{array}{lll}2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4\end{array}$	10	1
b.	If $y e \quad$ prove that. $\left(1+x^{2}\right) y_{n+2}+[(2 n+2) x-1) y_{n+1}+n(n+1) y_{n}=0 .$	10	2
c.	$\begin{array}{ccccccc} u & v & w & x & y & z, \\ u & v & w & x & y & z, \\ u & v & w & & x & y & z \end{array}$,Show that: $\begin{array}{cccccc} \frac{\partial u, v, w}{\partial x, y, z} & & 14 x y x y & y z & z x & 16 x y z \\ \hline 23 u & v & w & 27 u v w \end{array}$	10	3
d.	Evaluate by changing the variables $\iint x y \quad d x d y$ where R is the region bounded by the parallelogram $\mathrm{x}+\mathrm{y}=0, \mathrm{x}+\mathrm{y}=2,3 \mathrm{x}-2 \mathrm{y}=0$ and $3 \mathrm{x}-2 \mathrm{y}$ $=3$.	10	4
e.	Use divergence theorem to evaluate the surface integral $\iint x d y d z$ $y d z d x \quad z d x d y$ where S is the portion of the plane $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=6$ which lies in the first octant.	10	5

Roll No:

SECTION C

3. Attempt any one part of the following:

Qno.	Question	Marks	CO
a.	Find non-singular matrices P and Q such that PAQ is normal form. $\begin{array}{lll} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 1 \\ \hline \end{array}$	10	1
b.	Find the eigen values and the corresponding eigen vectors of the following matrix. $\begin{array}{llll} & 2 & 0 & 1 \\ A & 0 & 3 & 0 \end{array} .$	10	1

4. Attempt any one part of the following:

Qno.	Question	Marks	CO
a.	Find the envelope of the family of lines- connected by the relation $a \quad b \quad c$	1, where a and b are	10
b.	If $\mathrm{y}=\sin \left(\mathrm{m}_{\sin }-1 \mathrm{x}\right)$, find the value of y_{n} at $\mathrm{x}=0$.	10	2

5. Attempt any one part of the following:

Qno.	Question	Marks	CO
a.	Divide 24 into three parts such that continued product of first,square of second and cube of third is a maximum.	10	3
b.	If u secserove that $x-y-2 \cot u$.	10	3
	Also evaluate $x —$		

6. Attempt any ore part of the following:

Qno.	Question	Marks	CO
a.	Evaluate the following integral by changing the order of integration $-d y d x$.	10	4
b.	A triangular thin plate with vertices (0,0),(2,0) and (2,4) has density ρ $1 x \quad y$. Then find: (i) (ii) The mass of the plate. The position of its centre of gravity G.	10	4

7. Attempt any one part of the following:

Qno.	Question	Marks	CO
a.	A fluid motion is given by $\vec{v} y \sin z \quad \sin x \hat{\imath} \quad x \sin z \quad 2 y z \hat{\jmath}$ $x y \cos z \quad y \quad k$.Is the motion irrotational? If so, find the velocity potential.	10	5
b.	Verify Stoke's theorem for the function $F \cdot x \hat{\imath} \quad x y J$ integrated round the square whose sides are $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}$ in the plane $\mathrm{z}=0$.	10	5

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

